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4. Rationale:  
The obesity epidemic continues to rise with more than 41.1% of women obese in the United States 
in 2016 (1). With an increasing obese population, a growing body of evidence have found 
heterogeneity in obesity, with some phenotypes exhibiting differential risk for cardiovascular 
outcomes. Obesity in isolation of additional metabolic parameters (metabolically healthy obesity) 
has been shown to exhibit reduced or null risk of cardiovascular outcomes and mortality compared 
to obesity with additional metabolic health risk factors (metabolically unhealthy obesity). Indeed, 
the latter has consistently been associated with significantly poorer outcomes including 
cardiovascular outcomes and all-cause mortality compared to metabolically healthy obesity (2-6). 
These differences are persistent across all BMI categories with normal weight individuals with an 
excess of metabolic abnormalities exhibiting similar risk of chronic disease outcomes as their 
overweight and obese counterparts (6). These findings suggest that metabolic health status 
differentially influences the relationship between body mass index (BMI) and health outcomes 
while hinting at biomolecular differences underlying these phenotypes. BMI is intended to be a 
measure of adiposity and risk for chronic disease. However, BMI does not capture differences in 
body composition, particularly for athletes, individuals with high muscle mass, elderly individuals, 
and racial and ethnic minorities (7, 8). Thus examining BMI in combination with additional 
metabolic parameters can be more sensitive to body composition and improve predictive capacity.  

Biological mechanisms contributing to these differences have been well defined. For example, 
many rodent models have found several features that may be present in metabolically healthy obese 
individuals including low lipid deposition in the liver, a metabolically advantageous adipokine 
ratio (9) and an overexpression of GLUT4 transporter increasing de-novo lipogenesis (10). 
Similarly in humans, there appears to be substantial differences in liver fat content with 
metabolically healthy individuals having more favorable adipokine ratios including higher levels 
of adiponectin (11-13) and lower levels of ghrelin (14). However, it is unknown whether these 
phenotypes may be exhibiting differential epigenetic profiles which may be contributing to the 
differences in outcomes.  

Epigenetic mechanisms, such as DNA methylation (DNAm) are important biological features to 
examine in the context of chronic diseases such as obesity and metabolic health. Particularly in the 
role that they may play mediating health outcomes, since changes to DNAm can induce changes 
in gene expression in causal disease pathways. Obesity has been widely examined and shown to 
exhibit prolific methylation changes (15-17). Similarly, metabolic syndrome and metabolic 
outcomes have additionally been shown to be associated with differential methylation (18). 



However, no studies have integrated these phenotypes to examine how BMI-associated 
methylation varies by metabolic health status. Particularly since DNAm has been shown to play a 
mediating role with obesity and cardiovascular outcomes (19), evaluating the epigenome may 
provide insight into pathways contributing to the differences in outcomes. The purpose of this 
study is to examine the whether metabolic health status differentially influences BMI-associated 
methylation. In the significant sites identified through the epigenome-wide association study 
(EWAS), longitudinal analysis of association between metabolic health status and change in 
methylation will be explored as well as the association between DNAm and coronary heart disease 
(CHD). 

 
5. Main Hypothesis/Study Questions: 

• Aim:  Examine whether metabolic health status differentially influences the relationship 
between BMI and DNA methylation. 

• Hypothesis: We will identify BMI-associated methylation that is influenced by metabolic 
health status.  
 

6. Design and analysis (study design, inclusion/exclusion, outcome and other variables of 
interest with specific reference to the time of their collection, summary of data analysis, and 
any anticipated methodologic limitations or challenges if present). 
 
Study population 

Two cohorts will be used in the discovery phase: the Women’s Health Initiative (WHI) and the 
Atherosclerosis Risk in Communities study (ARIC). Data from three WHI ancillary studies will 
be included: Epigenetic Mechanisms of Particulate Matter-Mediated Cardiovascular Disease 
(EMPC, aka AS315), the Integrative Genomics for Risk of Coronary Heart Disease and Related 
Phenotypes in WHI cohort (BAA23), and Bladder Cancer and Leukocyte Methylation (AS311).  
EMPC assessed epigenetic mechanisms underlying associations between ambient particulate 
matter air pollution and cardiovascular disease within the WHI Clinical Trials (CT, n=2200). 
BAA23 was a case-control study assessing predictors of CHD within the WHI CT (n=1664) and 
OS (n=442), where cases were identified using eight biomarkers of CHD. AS311 is a matched 
case-control study of bladder cancer among women within the WHI CT (n = 405) and OS (n = 
455). Secondary analyses will include a subset of individuals from EMPC and AS534 cohort.  

ARIC includes data from two ancillary studies of 2,879 African Americans (AA) and 1,100 
European Americans (EA). ARIC is an ongoing prospective cohort study investigating the etiology 
of CHD in four US communities: Forsyth County, NC; Jackson, MS; Minneapolis, MN; 
Washington County; MA. Participants were aged 45 to 64 and followed up for trends in coronary 
heart disease in each community over 15 years with 7 study visits (20). DNAm are available in a 
subset (n= 3979) of participants at visit 2 (1990-1992) or visit 3 (1993-1995).  

The replication cohort will be derived from the Multi-Ethnic Study of Atherosclerosis (MESA) 
study. MESA is a longitudinal, population cohort study designed to examine risk factors for and 
the progression of cardiovascular disease (CVD). Participants aged 45-84 years without clinically 
apparent CVD were recruited between July 2000 and August 2002 from 6 regions in the US: 
Winston-Salem, NC; Northern New York, NY; Baltimore, MD; St. Paul, MN; Chicago, IL; and 
Los Angeles, CA. DNA methylation was derived from monocyte samples at Exam 5 (April 2010-



February 2012) in a random sample of 1,264 non-Hispanic white, African American and Hispanic 
participants (21, 22).  

Measurements 

Weight, height, waist circumference and blood pressure (BP) were measured at the physical exam. 
BMI was calculated as weight (kg)/height (m)2. Waist circumference was measured to the nearest 
0.5 cm. Two BP measurements were collected (systolic/diastolic). Biochemical measurements 
were analyzed in blood samples collected after a 12-hour fast. These include triglycerides (TG), 
high-density lipoprotein cholesterol (HDL), and fasting glucose.   

Metabolic Health Exposures 

Metabolic risk will be determined by presence 
of three or more components of metabolic 
syndrome using the Adult Treatment Panel III 
(ATP III) criteria listed in Table 1. Thus, 
metabolically unhealthy and healthy will refer to 
the presence of three or more and less than three 
components, respectively. BMI will be 
examined continuously.   

Covariates 

Covariates in our analysis will include race/ethnicity, age, smoking status, and physical activity 
level. Race/ethnicity, smoking and physical activity were self-reported. Smoking status will be 
defined as current, former or never. Physical activity was measured using a physical activity 
questionnaire and will be defined by total energy expended from recreational physical activity 
which includes walking, mild, moderate and strenuous physical activity in kcal/week/kg (MET-
hours/week).  

Exclusions 

Individuals will be excluded if metabolic health parameters and DNA methylation were not 
measured within the same year. Additionally, secondary analyses involving CHD will exclude 
participants with a history of (or incident) myocardial infarction or coronary revascularization 
(angioplasty; stent; bypass) before measurement of DNA methylation.  

Outcome in Secondary Analyses 

In significant sites identified through EWAS, DNA methylation at cytosine and guanine nucleotide 
pair (CpG) sites will be examined as a predictor of incident CHD. CHD was defined by incident 
myocardial infarction or CHD death. In WHI and ARIC, medical records were reviewed and acute, 
hospitalized myocardial infarction was identified on the basis of cardiac pain, electrocardiogram, 
and biomarker data; then physician-adjudicated. Further details regarding the review, 
classification, and adjudication of CHD in WHI (23) and ARIC (24) have been described.  

DNA methylation 

In the WHI and ARIC cohorts, DNA was extracted from peripheral blood leucocytes collected at 
visit-specific fasting blood draws (25). In the MESA cohort, DNA was extracted from peripheral 
blood monocytes (26). DNA methylation in all three cohorts was measured using the Illumina 

Table 1. ATP III Clinical Identification of Metabolic Syndrome 



450K Infinium Methylation BeadChip. DNA methylation was estimated as the proportion of 
methylated probes relative to combined unmethylated and methylated probes for a specific CpG 
sites defined as the β-value. All methylation data will be quality controlled and normalized using 
beta-mixture quantile normalization. Technical covariates will include plate, chip, and row to 
adjust for batch effects and cell composition, which was estimated using the reference-based 
Houseman method (27). Additional quality control procedures will include exclusion of probes 
with multi-modal signals as detected by the gaphunter function in the minfi package.  

Statistical Analysis 

A summary of the proposed analyses is provided in Figure 1.  

 

 

 

Figure 1. Proposed Analysis Plan 



We will be using R for all analyses. Demographic characteristics will be defined by means and 
counts. In the EWAS, all models will be stratified by cohort (EMPC, BAA23, AS311 in WHI) and 
race (AA and EA in ARIC) and pooled using inverse-variance weighted analysis. Since BMI has 
been shown to linearly associate with methylation, we will examine BMI continuously. To 
examine the differential impact of metabolic health status on BMI, linear regression models will 
be used regressing the methylation β-value on BMI with an interaction term included for BMI and 
metabolically unhealthy status, adjusting for covariates (Figure 2). Covariates in all models will 
include cell composition, principal components of genetic relatedness, race/ethnicity (WHI), sex 
(ARIC), age, alcohol consumption and smoking. Study-specific covariates will include trial arm 
(EMPC, BAA23, AS311), case-control status (BAA23, AS311) and U.S. Census region (WHI) or 
study site (ARIC). To account for potential chip-to-chip differences in measurement and to adjust 
for batch effects, we will include a fixed effect for each BeadChip in our model. Significant CpG 
sites will be identified by the interaction p-value (β3 in Figure 2) at a false discovery rate (FDR) 
q-value <0.05. At significant sites, metabolically healthy status will be examined for interaction 
with physical activity. In non-significant interaction models, physical activity will be examined as 
a confounder for each CpG site.  

Results identified in the discovery cohorts will be replicated in the MESA cohort using linear 
regression models. Significant CpG sites will be examined using linear regression models 
regressing methylation β-value on BMI with an interaction for metabolically unhealthy status. 
Models will be adjusted for chip number and location, cell composition, principal components of 
genetic relatedness, ethnicity, age, sex, alcohol consumption and smoking. Significance is defined 
at Bonferroni-corrected p-value < 0.05. 

Longitudinal and Outcomes Analyses 

Among significant sites, using longitudinal data from EMPC and 
AS534, we will examine the association between change in 
metabolic health parameters and BMI and methylation in 200 
women with methylation and metabolic health status measured 3 
or 6 years and 43 women with methylation and metabolic health 
status measured on average 16 years after baseline methylation 
measurement. Using mixed effect models, we will examine 
methylation (outcome) regressed on metabolic health status and 
BMI (exposures) adjusting for age, ethnicity, chip, plate and cell 
composition as fixed effects with a random effect for time and 
subject. Models examining change in metabolic health status will be examined adjusted and 
unadjusted for BMI.  

 Cases Non-Cases 

Total 313 2010 

EMPC 49 1133 

BAA23 255 673 

AS311 9 204 

Figure 2. Linear models examined in discovery and replication cohorts 

Table 2. Number of Adjudicated 
CHD Cases in WHI 



Given the association between metabolic health, BMI, and differential health outcomes, 
multivariate cox proportional hazard ratios will be used to examine whether significant sites 
identified through EWAS (exposure) are associated with incident CHD in the WHI (Table 2) and 
ARIC cohort. Covariates will include age, ethnicity, smoking status, chip, plate, and cell 
composition in the reduced model. The full model will additionally adjust for triglycerides, HDL 
cholesterol, blood pressure and CHD medications use.   

Enrichment Tests 

In the identified sites, we will conduct several analyses including Kytoto Encyclopedia of Genes 
and Genomes (KEGG) pathway analysis utilizing several publically available resources (28). To 
assess the functional enrichment of differentially methylated sites and identify relevant pathways 
associated with metabolic health, a KEGG pathway analysis will be conducted on significant CpG 
sites using the missMethyl package (29). Threshold for the above analyses will be p<0.05. 

Power Calculation 

Using the method of Liu and Hwang (30), we 
tested several scenarios to ensure adequate 
power to identify the minimum effect size (r2) 
and achieve the desired power (>80%) with a 
FDR q-value<0.05 for 450,000 tests (Table 
3). We tested the minimum effect size for the 
above aims with a total sample of ~3500 to account for any exclusions. We have >80% power to 
detect methylation changes associated with the interaction between metabolic health and BMI with 
an r2 detecting effects as low as 0.3% of the variance in methylation. Interaction effects are often 
subtle, but this analysis shows we’ll have power to detect very subtle effects. In the replication 
analysis, we calculated the minimum effect size we will be able to identify for replicating 10, 50 
or 1000 CpG sites correcting for multiple testing using Bonferroni correction (0.05/# of tests). We 
will be able to detect effects if as low as 1% of the variance in methylation can be explained by 
the interaction.  

Sensitivity analyses 

As metabolic health status is constructed from a number of metabolic parameters, differences in 
methylation may be driven by individual metabolic parameters. To assess the degree that 
individual metabolic parameters influence methylation at significant sites, we will reanalyze 
associations between BMI*metabolic health status and methylation adjusting for each individual 
metabolic parameter and compare the effects to the original estimates obtained through EWAS. 
Among replicated sites identified in the main analysis, we will examine categorical BMI and 
metabolic health status (metabolically healthy/unhealthy normal weight/obesity) using ANOVA 
adjusted for the same covariates to identify differential methylation patterns associated with the 
subtypes. Given the significant differences in methylation (31-33) and metabolic and 
cardiometabolic diseases (34) driven by sex, adjustment may not fully account for these 
differences. We will conduct sensitivity analyses of the replicated sites stratified by sex in the 
ARIC cohort to examine the differences in the main effects by sex. In longitudinal analyses, 
significant sites identified to associate with change in metabolic health status will be examined by 
individual metabolic parameters to identify the driving metabolic factor.  

# of DM CpG sites 10 50 1000 

Discovery r2 0.0048 0.0041 0.0032 

Replication r2  0.0105 0.013 0.0187 

DM=differentially methylated 

Table 3. Minimum Effect Size for Interaction Analysis 



Limitations 

There are some limitations. Given the cross sectional design, we cannot determine any causal 
association and may be at risk for reverse causality, if methylation is contributing to changes in 
BMI or metabolic risk factors. Moreover, metabolic risk factors may also be a product of duration 
of obesity, since several studies have found metabolically healthy obesity to be a transitory state 
(35-37). However, understanding the methylomic differences in these populations would still be 
advantageous to identify biological mechanisms that may be driving the differences in outcomes. 
Another potential limitation includes the potential for confounding by cell composition. Obesity 
and several of the metabolic health parameters associate with excess inflammation (38). While we 
will control for cell composition using methods of Houseman et al (27), we may not be able to 
account for rarer cell types and the identified CpG sites may be a reflection of these differences in 
cell composition associated with differential inflammatory profiles associated with these disease 
exposures.  
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